- Help Center
- Automation/Electrical
- Solid-state Relays
-
Pneumatics
- Air Cylinders
- Air Dryers
- Auto Switches
- Boosters
- Electric Actuators
- Fieldbus System/Serial Transmission System
- Fittings
- Modular F.R.L.
- Pressure Switches
- Regulators
- Rotary Actuators
- Solenoid Valve
- Temperature Control Equipment
- Vacuum Equipment
- Photoelectric Sensors
- Process Valves
- Valve Clamps and Accessories
- Pumps
- Additional Articles in Pneumatics
- Safety Valves
- Tubing
-
Hydraulics
-
Automation/Electrical
- Contact Sensors / Liquid Leakage Sensors
- Level Switches
- Basic Switches
- Limit Switches
- Push Buttons / Indicator Lamps
- Thumbwheel Switches
- Safety Limit Switches
- Temperature Controllers
- Counters
- Programmable Relays
- Programmable Controllers
- Safety Sensors
- Safety Door Switches
- Solid-state Relays
- Timers
- Inverters
- Power Supplies
- Axial Fans
- Wiring Systems
- Rotary Encoders
- Pressure Sensors
- Displacement Sensors/Measurement Sensors
- Ultrasonic Sensors
- Emergency Stop Switches
- Power Controllers
- Signal Converters
- Machine Automation Controllers
- RFID Systems
- Measuring / Motor Protective Relays
- Vision Sensors / Machine Vision Systems
- Photomicro Sensors
- Digital Panel Indicators
- Programmable Terminals
- Servomotors / Servo Drivers
- Proximity Sensors
- General Purpose Relays
- Fieldbus Communications
-
Safety
-
Website Help Center
What is counter-electromotive force (surge)?
Counter-electromotive force is the voltage that arises in the reverse direction when the switch is set to OFF with an inductive load using a coil. As shown in Figure 1, flux is generated when voltage is applied to the coil.
When the switch is set to OFF again, there is no more flux, but the coil's self-induction action causes counter-electromotive force to be generated in the direction where flux remains. A very high voltage is generated because the switch is already open and there is no place for the power arising from the coil to escape to.
Counter-electromotive force may cause contact wear and element damage. Use caution when using coil loads. As shown in Figure 2, both the power supply voltage and the counter-electromotive force will be applied to the open switch.